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Abstract— Although the recent learning-based image and video
coding techniques achieve rapid development, the signal fidelity-
driven target in these methods leads to the divergence to a
highly effective and efficient coding framework for both human
and machine. In this paper, we aim to address the issue by
making use of the power of generative models to bridge the gap
between full fidelity (for human vision) and high discrimination
(for machine vision). Therefore, relying on existing pretrained
generative adversarial networks (GAN), we build a GAN inver-
sion framework that projects the image into a low-dimensional
natural image manifold. In this manifold, the feature is highly
discriminative and also encodes the appearance information of
the image, named as latent code. Taking a variational bit-rate
constraint with a hyperprior model to model/suppress the entropy
of image manifold code, our method is capable of fulfilling the
needs of both machine and human visions at very low bit-
rates. To improve the visual quality of image reconstruction,
we further propose multiple latent codes and scalable inversion.
The former gets several latent codes in the inversion, while the
latter additionally compresses and transmits a shallow compact
feature to support visual reconstruction. Experimental results
demonstrate the superiority of our method in both human
vision tasks, i.e. image reconstruction, and machine vision tasks,
including semantic parsing and attribute prediction.

Index Terms— Video coding for machine, generative adversar-
ial networks, GAN inversion, multiple latent codes, scalable GAN
inversion.
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I. INTRODUCTION

THE coming of the big data era changes the way we
perceive the signal. The massive images/videos collected

every day from a large number of applications of smart
cities and the Internet of Things (IoT) that will be consumed
by machines constitute challenges to existing processing
paradigms in terms of latency and accuracy. On one hand, the
Compress then Analyze video compression and transmission
paradigms [1], [2], [3] are achieving continuously improving
performance to compress full pixels, especially when recent
deep learning techniques have been adopted for optimizing
codecs modules or changing the whole framework. However,
the full pixel representations are of low density for analytics
applications. Compressing and storing all video data inevitably
incurs the low quality of reconstructed images/videos and
harms the analytics performance severely. On the other hand,
the Analyze then Compress framework extracts dedicated
compact analytics features to support video analytics tasks,
by consuming much fewer bit-rates than the compressed video
itself. However, this one-by-one solution is also sub-optimal
to support diverse analytics tasks along with the collected
massive data, due to the existence of multi-task redundancy.

To further develop collaborative compression techniques
for human and machine, arising from the emerging MPEG
standardization efforts,1 video coding for machine (VCM) [4]
starts the researches to improve the performance of intelli-
gent analytics while reducing the bit-rate cost via multi-task
end-to-end optimization. Some works [5], [6], [7] propose
to redesign the existing codecs to target machine analysis.
However, the design principle of existing codecs and the
form of transmitting images/videos constrain the extent of
feature compactness and model flexibility. Some works pro-
pose to focus on compressing intermediate features [8], [9],
[10], [11] extracted from pretrained deep networks. However,
as the pretrained deep networks are not designed with bit-
rate constraints and only for machine analytics, compressing
intermediate features might not achieve desirable performance
in terms of compactness and might fail to serve human.

Other works [12], [13], [14], [15], [16] explore collaborative
operations between video and feature streams to optimize the
coding efficiency from the perspective of both human and
machine visions, called Scalable Coding. The side information
or semantic features are first extracted to support machine

1https://lists.aau.at/mailman/listinfo/mpeg-vcm
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analytics, and these features are used to facilitate the full-
pixel image/video reconstruction. In this way, a desirable
performance might be obtained in terms of compactness,
human perception, and machine analytics. However, for this
kind of methods, there still are not well-explored critical issues
on what features are first extracted and how the scalable
mechanism is designed.

Recently, the fast development of generative adversarial net-
work (GAN) techniques brings in new opportunities. On one
hand, taking the image generation task as the supervision task,
GANs make great processes in learning the intrinsic distribu-
tions of real data and generating photo-realistic images. Thus,
this “abstract-to-appearance” translation leads to the potential
to construct an efficient scalable mapping to convert a semantic
code to the full-pixel image with appearances and textures.
On the other hand, GANs provide a mapping mechanism,
i.e. GAN inversion, to project the images into a manifold
where we can edit or manipulate the mapped latent codes
with more explicit intention. This “appearance-to-abstract”
translation brings in the capacity to encode the image’s most
critical semantic information with a very compact latent code.
These two points just meet the critical requirements in building
a Scalable Coding framework to support both human and
machine effectively.

In our work, we propose a scalable GAN inversion mecha-
nism to transmit two bit-streams (including a basic stream and
additional stream) to fulfill both human and machine visions at
very low bit rates. Based on the GAN inversion, we first derive
a very compact basic layer to support both human and machine
visions at very low bit rates. An encoder maps the image
into several latent codes and the corresponding coefficients for
better image reconstruction. The latent codes help generate
intermediate features of a pretrained GAN model, and the
related coefficients aim to combine those intermediate features
for more strong modeling capacity in GAN inversion. The
image manifold code is constrained by a variational bit-rate
constraint equipped with hyperprior, to support both machine
and human visions at very low bit-rates. We also further
propose to extend the latent code with multiple latent codes,
and scalable inversion schemes, adopting additional bit-rates
for visual reconstruction. Experimental results demonstrate our
superiority in term of both human and machine visions.

The contributions of this work are summarized as follows:
• We propose a novel compression framework that com-

bines the power of generative models as well as learned
bit-rate constraints and optimization for very low bit-rate
image/video compression.

• In our proposed framework, a very compact feature vector
is first compressed and transmitted to the decoder side,
which can be converted into machine analytics results
in an accurate and computationally efficient manner to
support the paradigm of collaborative intelligence.

• Beyond the baseline GAN inversion framework, to further
improve the human perception of full-pixel reconstruction
results, our proposed multiple latent codes and scalable
inversion significantly improve the visual reconstruc-
tion quality by bypassing the stream with reasonable
bit-rates.

The rest of this paper is organized as follows. In Section II,
we review related works in GAN inversion and video cod-
ing for machine. Section III defines the image compression
problem for both machine and human vision, and gives an
overview of the framework of our method. In Section IV, the
details about the proposed vision-driven image coding model,
Natural Image MAnifold Compression (NIMAC) network,
is presented. We validate our method by conducting extensive
experiments and thorough analyses in Section IV. Finally,
we conclude our work in Section VIII.

II. RELATED WORKS

A. GAN Inversion

GANs provide a mapping mechanism, i.e. GAN inversion,
to project the images into a manifold where we can edit
or manipulate the mapped latent codes with more explicit
intention. In [17], an encoder is learned to project a pre-
trained GAN’s generated images back into their corresponding
latent codes. Later works adopt StyleGAN [18], [19] as the
baseline generator, considering its extraordinary performance
in generated image quality and rich semantics of the latent
space. Based on the optimization technique, all methods can
be categorized into three classes: 1) online optimization [20],
[21], [22], [23]: optimizing the latent code at the testing time
for each testing image to minimize the distance between the
generated image and the input one; 2) offline optimization [24],
[25], [26], [27]: training a encoder to project the images into
the latent space; 3) their combination [28]. Via pretraining on
a large-scale dataset to obtain an encoder mapping, or utiliz-
ing the online optimization with a substantially longer time,
these methods achieve desirable reconstruction performance.
However, they do not consider the bit-rate constraint on the
codes and fail to support machine vision tasks, which are
quite necessary for real applications. Different from previous
methods, our encoder generates a compact latent code that can
accurately predict the attribute labels and generate the full-
pixel images without optimization.

B. Video Coding for Machine

Generally speaking, the new VCM approach have developed
along three lines in the last two years. The first branch is
built on image/video coding and codecs are redesigned towards
machine analysis, called Machine Vision Targeted Codec [5],
[6], [7]. These methods deliver images/video that is conducive
to the analysis and can achieve better analysis performance at
low bit rates. The second branch extends the specialized fea-
ture compression route to compress deep intermediate features,
including Intermediate Feature Compression [8], [9], [29] and
Optimization [10], [11]. The former aims to rebuild pre-trained
deep features based on feature fidelity constraints, while the
latter directly gets deep intermediate features and compres-
sion models involved in optimization according to the joint
task-driven analytics losses. The third branch considers more
collaborative operations between the streams of videos and
features. A sub-branch only optimizes the image/video cod-
ing efficiency towards human vision (categorized as Feature
Assisted Coding [12], [13]). Meanwhile, the other sub-branch
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Fig. 1. Overview of the proposed image coding framework based on GAN inversion. The red line denotes the path related to the attribute prediction.

improves the performance of both reconstruction quality and
machine analytics performance for both human and machine
(categorized as Scalable Coding [14], [15], [16]). Our pro-
posed method belongs to Scalable Coding, where an extremely
compact tensor is first transmitted for both highly accurate
analytics and a high-level semantic preserving full-pixel recon-
struction. After that, more bit-rates are transmitted, which
helps reconstruct competitive visual results with low bit-rates.

III. TOWARDS SCALABLE GAN INVERSION

In this section, we introduce a novel GAN inversion method
progressively. We first introduce the vanilla GAN inversion
method. After that, to make the inversion process perceive
richer information, a GAN inversion with multiple latent codes
is designed. In these two schemes, the transmitted codes take
the form of the feature vector, which is highly compact with
less information. To enable a reconstruction with relatively
higher fidelity, a scalable GAN inversion is introduced by
bypassing a compact feature tensor.

A. GAN Inversion

Given the input image Iin , as shown in Fig. 1-(a), GAN
inversion aims to project Iin into the latent space so that
the obtained code z can well reconstruct the input image
with a pretrained generator, e.g. BigGAN or StyleGAN, etc.
Formally, we have:

z = E(Iin|θe),

Irec = G(z|θg). (1)

where E(·) is the encoding process to project Iin to the latent
space, and G(·) is the synthesis process that generates an
image from a sampled noise or a given latent code provided
by the encoder. θe and θg are their parameters, respectively.
In GAN inversion, G(·|θg) is usually well trained and we hope
to train E(·|θe) as follows:

arg min
θe

L f id(Irec, Iin) + L per (Irec, Iin) + L task(Irec, Iin)

+ Lreg(Irec), (2)

where L f id(·) is the fidelity measure, such as L1 or L2 loss.
L per (·) is the perceptual quality measure, such as perceptual
loss [30] or LPIPS [31]. L task(·) is the task-driven metric,
such as the constraint to keep two face images having the
same identity. Lreg(·) is the regularization term imposed on
the Irec. For the need of machine analysis, we also introduce

an analysis model A(·|θa) with θa as its parameter to perform
attribute prediction using z as its input:

Iattr = A(z|θa). (3)

where Iattr is the predicted attributes, e.g. man/women, smile,
taking glasses, etc.

B. GAN Inversion With Multiple Latent Codes

The latent code is of low dimension and has limited
expressiveness. Hence, it is impossible to reconstruct every
detail of an arbitrary real image using a single latent code.
Then, as shown in Fig. 1-(b), we extend the single-code GAN
inversion in Eq. (1) into the case with multiple codes:

{zi , αi }i=1,...,N = E(Iin|θe),

fi = G1
(
zi |θg1

)
, i = 1, . . . , N

Irec = G2

( M∑
i=1

fi ⊙ αi

∣∣∣∣θg2

)
. (4)

Generally, G(·) can be decomposed as a sequential operation
of G1(·) and G2(·). where fi ∈ RH×W×C is the intermediate
feature generated from a part of generator G1(·). θg1 and θg2

are the parameters of G1(·) and G2(·), respectively. H, W, C
are the height, width, and channel of fi , respectively. αi ∈

R×C is a vector denoting the channel importance of fi . ⊙ is
the channel-wise product operation (channel attention) defined
as follows,

( fi ⊙ αi )k,l,m = ( fi )k,l,m × (αi )m (5)

where k ∈ [1, . . . , H ], l ∈ [1, . . . , W ], and m ∈ [1, . . . , C].
Similarly, the predicted attributes for machine analysis are

obtained via:

Iattr = A({zi , αi } |θa). (6)

Via generating multiple intermediate features from zi and
then merging them based on the channel attention, rich
information is included to boost the performance of machine
analytics and semantic guided visual reconstruction.

C. Scalable GAN Inversion

For full-pixel visual reconstruction, the multiple latent codes
scheme still does not provide enough information for a
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Fig. 2. Overview of our Natural Image MAnifold Compression Network (NIMAC-Net) for video coding for human and machine. The red line denotes the
path related to the attribute prediction. The blue lines denote the paths related to the loss calculation.

relatively high-fidelity reconstruction.

{zi , αi }i=1,...,N = E(Iin|θe),

fi = G1
(
zi |θg1

)
, i = 1, . . . , N

β = G2

( M∑
i=1

fi ⊙ αi

∣∣∣∣θg2

)
. (7)

Besides the information brought by the multiple latent codes
(feature vector), we also introduce a bypass connection that
transmits a compact feature tensor to the decoder side from
a relatively shallow encoder. After merging the transmitted
tensor and the feature tensor generated from the multiple latent
codes, we obtain the feature tensor with rich information that
helps full-pixel visual reconstruction as follows,{

gp, gq
}

= Eb
(
Iin|θeb

)
,

γ = β · gq + gp,

Irec = G3
(
γ |θg3

)
, (8)

where · is the element-wise product. This bypass connection
can significantly improve the signal fidelity of the visual
reconstruction results with more bit-rates.

Similarly, the predicted attributes for machine analysis are
obtained via:

Iattr = A({zi , αi } |θa). (9)

IV. NATURAL IMAGE MANIFOLD COMPRESSION
NETWORK FOR HUMAN AND MACHINE

In this section, based on the scalable GAN inversion
paradigm, we propose a more detailed Natural Image MAn-
ifold Compression Network (NIMAC-Net) for human and
machine visions to enforce the bit-rate constraint on the
transmitted latent codes and feature tensor. The overview
of NIMAC-Net is shown in Fig. 2. We then illustrate its
components one by one in the following.

A. Encoder

We first use two convolutional neural networks to extract the
compact latent code z and feature tensor g to be transmitted:

• The compact latent code z can be transmitted to support
semantic preserving full-pixel visual reconstruction at an
extremely low bit-rate;

• The feature tensor g compensate for the information of
appearances and textures in the reconstructed images,
which is absent in the very compact z.

In formulation, we have:

z = E(Iin|θe),

g = Eb(Iin|θb), (10)

where θe and θb are the parameters of the corresponding
processes E(·) and Eb(·), respectively. Then, z and g are
quantized as follows:

z̃ = Q(z),

g̃ = Q(g). (11)

In our implementation, E(·) takes the framework of
pixel2style2pixel encoder [32] and Eb(·) takes the frame-
work of a 9-layer convolutional neural network injected with
squeeze-and-excitation modules.

B. Hyperprior Probability Modeling

After obtaining quantized z̃ and g̃, we adopt the end-to-
end image compression method to constrain their entropy and
squeeze out their redundancy. Ideally, z̃ and g̃ are compact.
Their probability distributions are tractable and can be com-
pressed compactly into bit-stream. Therefore, we estimate and
constrain the entropy of the structured representation z̃ and g̃.

The details about the hyperprior and the related probability
modeling can be found in [33]. It it noted that, when perform-
ing the probability modeling for g̃, z̃ will be included as the
additional condition as denoted by the red dash in Fig. 2.

C. Analytics Module

After the quantization and entropy coding, along with the
bit-stream transmission, we obtain reconstructed z̃ and g̃ at
the decoder side. Then, at first, we can infer the face attribute
prediction results via applying the analytics model as follows,

Iattr = A(̃z|θa), (12)

where z̃ is almost equivalent to {zi , αi } in Eq. (9). As A(·|θa)

is a very lightweight model, i.e. several cascaded convolutional
layers and fully-connected layers, the response time at the
decoder side can be very fast and computation is very light,
which is desirable for collaborative intelligence [34]. Namely,
the most computation can be finished at the encoder side.
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D. Mapping Module

After that, the mapping modules will map z̃ and g̃ into a
continuous variables to generate the full-pixel images:

{zi , αi }i=1,...,N = M (̃z|θm) ,{
gp, gq

}
= Mb

(
g̃|θmb

)
, (13)

where M (·|θm) and Mb
(
·|θmb

)
are the mapping modules and

θm and θmb are their corresponding parameters, respectively.

E. Generator Module

With {zi , αi }i=1,...,N and
{
gp, gq

}
, we then map them into

the full-pixel visual reconstruction. Slightly different from
Sec. III-C, the

{
gp, gq

}
layers are split into several variables,

which are then injected into intermediate layers of G1(·) and
G2(·) in the way of spatial feature transform [35].

More specifically, G1(·), G2(·) and G3(·) can be decom-
posed into a sequential network:

G1(·) = Ĝ6 ◦ Ĝ5 ◦ Ĝ4 ◦ Ĝ3 ◦ Ĝ2 ◦ Ĝ1 ◦ Ĝ0(·),

G2(·) = Ĝ10 ◦ Ĝ9 ◦ Ĝ8 ◦ Ĝ7(·),

G3(·) = Ĝ16 ◦ Ĝ15 ◦ Ĝ14 ◦ Ĝ13 ◦ Ĝ12 ◦ Ĝ11(·), (14)

where each Ĝi (·) is a style convolution defined in Style-
GAN [19].

gp and gq are then split into several variable along their
channel dimension as follows:

gp =

{
g2

p, g4
p, g6

p, g8
p, g10

p

}
,

gq =

{
g2

q , g4
q , g6

q , g8
q , g10

q

}
. (15)

Then, we inject them into G1(·) and G2(·) via:

G1(·) = G̃6 ◦ Ĝ5 ◦ G̃4 ◦ Ĝ3 ◦ G̃2 ◦ Ĝ1 ◦ Ĝ0(·),

G2(·) = G̃10 ◦ Ĝ9 ◦ G̃8 ◦ Ĝ7(·),

G̃i (x) = Ĝi (x) · ĝi
p + ĝi

q , i = 2, 4, . . . , 10, (16)

where ĝi
p and ĝi

q are the resized version of gi
p and gi

q based on
the size of Ĝi (x). Following [19], Ĝi (x) is implemented by
cascaded two-layer convolutions, where the first convolution
up-samples the feature maps by the 2-time scale. In this way,
the information brought by the additional bit-stream g̃ leads
to the hierarchical manipulation on the different layers of the
generator following Eq. (16).

F. Loss Functions

To regularize the training of our NIMAC-Net, we adopt
three composite losses, attribute loss Lattr , reconstruction loss
Lrect , and entropy loss Lent , in the training phase, as shown
in Fig. 2.

1) Attribute Loss: Assume I t
attr and l t

attr are the prediction
results and labels of the t-th sample, the attribute loss is
defined as follows,

Lattr = λattr

M∑
t=1

Lsm
(
I t
attr , l t

attr
)
, (17)

where Lsm (·) is the softmax loss, M is the number of
all samples, and λattr is the parameter that balances the

importance of this term and other terms. This loss helps the
network own the capacity to predict the attribute labels of the
input image with little computation complexity at the decoder
side.

2) Reconstruction Loss: The reconstruction loss makes our
network own the capacity to reconstruct the input images. Our
adopted reconstruction loss consists of five parts as follows:

Lrect = λid L id + λlpips_1024Llpips_1024 + λlpips_256Llpips_256

+ λl2_1024Ll2_1024 + λl2_256Ll2_256, (18)

where L id aims to preserve the input identity when encoding
the facial images via dedicated recognition loss measuring the
cosine similarity between the generated result and the label
image:

L id =

M∑
t=1

1 −
〈
R(I t

rec), R(I t
in)
〉
, (19)

where R(·) is a pretrained ArcFace network [36] and ⟨·, ·⟩

measures the cosine similarity.
Llpips_1024 and Llpips_256 measure the perceptual simi-

larities at the resolution of 1024 × 1024 and 256 × 256,
respectively, as follows,

Llpips_1024 =

M∑
t=1

∥∥F
(
I t
rec
)
− F

(
I t
in
)∥∥2

2 , (20)

Llpips_256 =

M∑
t=1

∥∥∥F
(

D 1
4
(I t

rec)
)

− F
(

D 1
4
(I t

in)
)∥∥∥2

2
, (21)

where F (·) is the perceptual feature extractor, i.e. AlexNet.
D 1

4
(·) is the a down-sampler that down-samples the input

image into its 1/4 resolution.
The pixel-wise l2 loss is adopted to maintain the basic signal

fidelity as follows,

Ll2_1024 =

M∑
t=1

∥∥I t
rec − I t

in

∥∥2
2 , (22)

Ll2_256 =

M∑
t=1

∥∥∥D 1
4
(I t

rec) − D 1
4
(I t

in)

∥∥∥2

2
. (23)

λid , λlpips_1024, λlpips_256, λl2_1024 and λl2_256 are the weight-
ing parameters of each term to balance their importance in the
training.

3) Bit-Rate Loss: We also estimate the entropy of z̃ and g̃
based on Sec-IV-B as follows,

Lent = λent

M∑
t=1

(
E N (̃zt ) + E N (g̃t )

)
, (24)

where E N (·) is the process to estimate the entropy of the input
variable/feature. More details about the bit-rate/entropy esti-
mation can be found in [33]. λent is the weighting parameter
to balance the importance of the term during the training.

4) Whole Training Loss: We finally combine all losses into
an integrated loss function for training:

L All = Lattr + Lrect + Lent . (25)
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TABLE I
QUANTITATIVE RESULTS OF DIFFERENT METHODS FOR IMAGE RECONSTRUCTION. BPP DENOTES BITS-PER-PIXEL. LPIPSSQ (1024), LPIPSSQ (768)

AND LPIPSSQ (512) CALCULATE THE LPIPS AS THE DISTORTION MEASURE BASED ON THE FEATURES EXTRACTED FROM THE SQUEEZENET
AT THE RESOLUTION OF 1024 × 1024, 768 × 768, AND 512 × 512, RESPECTIVELY. THE BEST AND SECOND BEST RESULTS ARE DENOTED

IN RED AND BLUE, RESPECTIVELY

Fig. 3. RD-curves of different methods for image reconstruction taking LPIPSSQ as the distortion measure at the resolutions of 1024 × 1024, 768 × 768,
and 512 × 512.

V. EXPERIMENTAL RESULTS

A. Datasets

We use FFHQ-Aging [37] for evaluation. FFHQ-Aging is
a Dataset of human faces designed for benchmarking age
transformation algorithms as well as many other possible
vision tasks. This dataset is an extension of the NVIDIA FFHQ
dataset [19]. On top of the 70,000 original FFHQ images,
it also contains the following information for each image: 1)
Gender information (male/female with confidence score); 2)
Age group information (10 classes with confidence score);
3) Head pose (pitch, roll & yaw); 4) Glasses type (none,
normal or dark); 5) Eye occlusion score (0-100, different score
for each eye); 6) Full semantic map (19 classes, based on

CelebAMask-HQ labels). We split the whole FFHQ into the
training set (ID: 00000-59999) and the testing set (ID: 60000-
60099). There are in total 60,000 training and 100 testing
images. We use the gender, age, and glass attributes as the
labels to evaluate the performance of different methods in
attribute prediction. We also adopt the full semantic map as
the semantic label to evaluate the performance of different
methods in semantic segmentation.

B. Compared Methods

The compared methods covers learning-based compression
methods including bmshj2018-factorized [38], bmshj2018-
hyperprior [38], mbt2018-mean [39], mbt2018 [39], cheng-
2020-anchor [40], cheng2020-attn [40], lcb2019-context
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TABLE II
QUANTITATIVE RESULTS OF DIFFERENT METHODS FOR IMAGE RECONSTRUCTION. BPP DENOTES BITS-PER-PIXEL. LPIPSALEX (1024), LPIPSALEX

(768) AND LPIPSALEX (512) CALCULATE THE LPIPS AS THE DISTORTION MEASURE BASED ON THE FEATURES EXTRACTED FROM THE
ALEXNET AT THE RESOLUTION OF 1024 × 1024, 768 × 768, AND 512 × 512, RESPECTIVELY. THE BEST AND SECOND BEST RESULTS

ARE DENOTED IN RED AND BLUE, RESPECTIVELY

[41], wyhl2022-neural-syntax [42], HiFiC [43], ICME [44],
Analysis-Friendly [45], Analysis-Friendly (SR) [45], and tra-
ditional codecs including JPEG (implemented by MATLAB),
JPEG20002 [46], HEVC-based BPG3 [2], and VVC-based
VTM [47]. The former eight learning-based methods are signal
fidelity-driven methods while HiFiC targets optimizing human
visual perception trained with generative adversarial networks.
ICME and Analysis-Friendly are methods designed specially
for facial image compression. The technique in [45] can
only support the compression of the image with a resolution
256 × 256. In our paper, we focus on the compression of
facial images at a high resolution 1024 × 1024. To com-
pare with [45] fairly, we first use the method to compress
the down-sampled images with a resolution of 256 × 256,
and then adopt the state-of-the-art super-resolution method
ESRGAN [48] to up-sample the reconstructed images to
the resolution 1024 × 1024 as the final compression results.
These results are denoted as Analysis-Friendly. At the same
time, the results of [45] are further enhanced by a retrained
post-processing super-resolution network [49], which narrows
down the resolution gaps between our method and [45].
The related results are denoted as Analysis-Friendly (SR).
For the implementation of the former eight learning-based

2https://github.com/uclouvain/openjpeg/releases/tag/v2.4.0
3https://bellard.org/bpg/

methods, we select the implementation of CompressAI4 in
the evaluation. VTM/VVC is the state-of-the-art traditional
image/video codec. For attribute prediction, we also compare
our method with a feature compression method Chen et al. [8].

C. Evaluation Measures

Different distortion measures are adopted in evaluating
different tasks.

• For image reconstruction, we use LPIPS [31] at the
resolution of 1024 × 1024, 768 × 768, and 512 × 512 as
the quality measures. The features used to calculate the
measure are extracted from the pretrained AlexNet and
SqueezeNet. A lower LPIPS score demonstrates better
visual quality.

• For face parsing, the metrics of common semantic seg-
mentation and scene parsing evaluations are delivered.
Those are variations [50] on pixel accuracy and region
intersection over union (IU): pixel accuracy, mean accu-
racy, mean IU, and frequency weighted IU. We use
the BiSeNet5 as the parsing network. The models are
retrained.

4https://github.com/InterDigitalInc/CompressAI
5https://github.com/zllrunning/face-parsing.PyTorch

Authorized licensed use limited to: Peking University. Downloaded on April 07,2025 at 06:44:38 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: FACIAL IMAGE COMPRESSION VIA NEURAL IMAGE MANIFOLD COMPRESSION 3819

Fig. 4. RD-curves of different methods for image reconstruction taking LPIPSAlex as the distortion measure at the resolutions of 1024 × 1024, 768 × 768,
and 512 × 512.

Fig. 5. Visual comparisons of different methods for image reconstruction. The followed number denote the BPP of each method for the given image.
CA denotes cheng2020-attn. Zoom-in for better visualization of the detailed reconstructed textures.

Fig. 6. RD-curves of different methods for semantic segmentation.

• For attribute prediction, the accuracy in age, gender and
glass predictions are adopted for evaluation. We use the
ResNet506 as the attribute prediction network.

We also adopt bits-per-pixel (BPP) to measure the compact-
ness of features/images for all tasks.

D. Implementation Details

In our implementation, we set λattr = 10, λid = 0.1,
λlpips_1024 = 80, λlpips_256 = 8, λl2_1024 = 10, λl2_256 = 1,

6https://github.com/d-li14/face-attribute-prediction

and set λent = 5, 2, 0.1 in three versions of our method. The
initial learning rate is set to 0.0001 and Adam is adopted as
the optimizer. The training stops after 1,500,000 iterations.

E. Evaluation for Image Reconstruction

The quantitative results of different methods for image
reconstruction are shown in Table II and Fig. 4. Several
observations are obtained:

• For evaluating in LPIPS at both the resolutions
of 1024 × 1024, 768 × 768, and 512 × 512, the
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TABLE III
QUANTITATIVE RESULTS OF DIFFERENT METHODS FOR SEMANTIC SEGMENTATION. BPP DENOTES BITS-PER-PIXEL. THE BEST AND SECOND BEST

RESULTS, EXCEPT FOR THE GROUND TRUTH, ARE DENOTED IN RED AND BLUE, RESPECTIVELY

Fig. 7. Visual comparisons of different methods for semantic segmentation. CA denotes cheng2020-attn. It is noted that, in the ground truth, the left and
right eyes are denoted in green and purple, respectively.

proposed method occupies the most left-bottom loca-
tion. It shows that, our method obtains less distortion

with fewer bit-rates, which clearly demonstrates our
superiority.
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Fig. 8. RD-curves of different methods for attribute prediction.

TABLE IV
QUANTITATIVE RESULTS OF DIFFERENT METHODS FOR ATTRIBUTE PREDICTION. BPP DENOTES BITS-PER-PIXEL. THE BEST AND SECOND BEST

RESULTS, EXCEPT FOR THE GROUND TRUTH, ARE DENOTED IN RED AND BLUE, RESPECTIVELY

• For LPIPS at the resolution 1024 × 1024, HiFiC signif-
icantly outperforms other previous methods, while for
LPIPS at the resolution 512 × 512, HiFiC’s results are
mixed with other learned-based methods in locations.

• VTM achieves the best results for both LPIPS at all
resolutions among all traditional codecs.

• For learning-based fidelity-driven methods, cheng2020-
anchor and cheng2020-attn achieve the best results.

The visual comparisons of different methods are shown in
Fig. 5. It is observed that, JPEG’s results suffer from severe

blockiness and visual artifacts even consuming much more
bit-rates. HiFiC, bmshj2018-factorized, and cheng2020-attn’s
results include fewer artifacts. However, HiFiC sometime
includes severe artifacts in the background, e.g. the third
row of Fig. 5 (e). Overall, HiFiC, VTM, and cheng2020-
attn’s results are smoother in texture regions, while our
results contain richer and more vivid texture appearance,
e.g. in scarf and hair regions in the first row, hair regions
in the second row, and face wrinkles in the third raw in
Fig. 5.
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Fig. 9. Visual comparisons of different versions of our method for image compression. The followed number denotes the BPP of each method for the given
image.

TABLE V
THE TOTAL ENCODING AND DECODING TIME OF DIFFERENT METHODS

F. Evaluation for Semantic Segmentation

The quantitative results of different methods for semantic
segmentation are shown in Table III and Fig. 6. Several
conclusions are reached:

• For pixel accuracy and frequency weighted IU, our
method, which locates at the top-left of the figures, wins
all other compared methods, achieving higher perfor-
mance when consuming the same bit-rate.

• For mean accuracy and mean IU, our method locates
at the left of the figures compared to other methods.
The results show that, our method achieves almost the
competitive performance at the very low bit-rates cost
compared to other methods.

• It seems that, HiFiC, ICME, and Analysis-Friendly
achieve the worst results among all methods, considering
all figures in Fig. 6.

The visual comparisons of different methods are shown
in Fig. 7. It is noted that, in the ground truth, left eyes are
denoted in green while right eyes are denoted in purple. It is

observed that, our method generates the most correct semantic
predictions for left and right eyes.

G. Evaluation for Attribute Prediction

The quantitative results of different methods for attribute
prediction are shown in Table IV and Fig. 8. We obtain several
interesting observations:

• All methods provide enough good results if an analysis
process is performed on reconstructed images.

• If there is no expectation on much additional complexity
for attribute prediction, our method with bit-stream (tak-
ing Iattr as the final analysis result) and Chen et al. also
provide good attribute prediction results.

• Ours (bit-stream) leads to both bit-rate and complexity
saving, which shows the superiority of our design in
attribute prediction.

H. Evaluation for Running Time Complexity

We compare the total encoding and decoding time of
different methods in Table V. All methods are compared
on a machine with an AMD Ryzen Threadripper PRO
3955WX 16-Cores CPU, 128G Memory, and NVIDIA RTX
A5000 GPU. JPEG2000, BPG, VTM, and Analysis-Friendly,
are tested on CPU, while other methods are tested on GPUs.
bmshj2018-factorized, bmshj2018-hyperprior, mbt2018-mean,
mbt2018, cheng2020-anchor, cheng2020-attn are implemented
by CompressAI4. Others are tested based on the author pro-
vided or public available implementations. It is observed that,
our method achieves competitive results, only slower than
JPEG2000 and much faster than other learning-based methods.

I. Ablation Studies on Different Architectures

We compare the image reconstruction results with different
architectures shown in Fig. 1. The results are shown in Fig. 9.
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It is observed that, GAN inversion with a single latent code
can roughly reconstruct a face that looks similar to the input
image at very low bit-rates. With multiple latent codes, our
method is capable of reconstructing faces with a much more
similar identity to the original ones, which can provide useful
information to human at very low bit-rates. With the scalable
GAN inversion, we obtain compression results with high
fidelity and perceptual quality, also with much more bit-rate
use.

VI. CONCLUSION

In this paper, we develop a GAN inversion-based com-
pression framework that pursues a compact low-dimensional
natural image manifold for facial image compression. With
the merit of GAN training, the latent code in this space is not
only highly discriminative but also capable of encoding the
appearance information of the image. After applying a bit-
rate constraint, a compact code is obtained to perform the
multiple tasks from the view of both machine and human
visions at very low bit-rates. We further extend the latent code
form with the proposed multiple latent codes, and scalable
inversion schemes to additionally compress and transmit a
shallow compact feature to support visual reconstruction for
better visual quality. Experimental results demonstrate the
superiority of our method in both human vision and machine
vision tasks.
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